From Zero Trust to Zero Auth with AI
Chris Pittman
Sales Engineer

MSIA Digital Forensics
SEC+, CISSP, CRISC
22 Years in I.T.
17 Years Security
Digital Privacy Advocate
What is Zero Trust?

John Kindervag of Forrester ~ 2010, Still Evolving

Fundamentals

- Mobile users are accessing distributed data from multiple devices
- The network is always assumed hostile
- Threats exist internally & externally
- Trust is a vulnerability

Application

- Requires unrestricted **visibility** into DAAS
- Identity management involves **ALL objects**
- Requires **continuous** authentication
- Must be proliferated **across environment**
- Policies must be **dynamic** & derived from multiple sources of data
The challenge:

Zero Trust
This is what security team wants – nobody gets or keeps access to anything until they prove and continue to prove who they are, that access is authorized, and they are not acting maliciously.

Zero Auth
This is what users want – immediate gratification with instant access to anything and everything they believe they need to get job done and without hassles of passwords, timeouts, special permissions, 2FA, etc.
A real world example from mobile domain

CONSIDER: A typical company device/App policy balancing security and user interference:

- Timeout: 30 minutes
- Fingerprint: allowed, but password required every 72 hours*
- Password: 9 characters, alpha + numeric + special required

Is this policy adequately preventing data loss?

Maybe…? Probably only in specific CONTEXTS
How AI can help get from ZT to ZA

Contextual Auth
AI can help us understand the "macro" context and whether the user's current context fits with trusted behavior and whether we should proceed at all.

Continuous Auth
AI can help us **CONTINUOUSLY** assess the "micro" context of user's ongoing behavior as it occurs and decide whether we should continue to allow access.

Dynamic Policy Adaption
AI can help us dynamically apply policies at the right time and learn when otherwise static policies are either too strict or too lenient.
What practical AI techniques apply?

Unsupervised Learning
Learn what is 'trusted' and 'normal' behavior & locations for individuals, groups, and roles and dynamically apply policy tuned to the user's context and actual risk profile.

Deep Learning
Use passive biometrics & behavioral analytics into 'n-factor' authentication of 'legit' user and solve practical problems with timeouts, FaceId, and Fingerprints.

Anomaly Detection
Exploit patterns almost always vary from normal usage – supervised and unsupervised techniques such as Isolation Forest may be applied.
Now, let’s look at those scenarios again...

Contextual Auth
We’ve learned this a trusted location for John and also location that is unique to him. We can relax timeout policy knowing that device loss risk is virtually nil.

Continuous Auth
We’ve learned this is a trusted location for John and many others. We can relax timeout policy knowing that device loss risk is relatively low, but use Continuous Auth to guard against malicious use.

Dynamic Policy Adaption
We know this is not a trusted location for John or anyone else. Timeout was automatically reduced to mitigate against higher probability of loss and can take specific geo-zones and user’s role into account.
AI bridges gap from Zero Trust to Zero Auth

AI-based Contextual and Continuous authentication enables “MICRO” and “MACRO” Validation of user identity and behavior across all devices and environments.

User’s VALIDATED MOBILE ACTIVITY provides equivalent of strong second factor for device access when contexts are correlated and known to be high trust; Instantly register changes and dynamically apply controls.
THANK YOU!