OSSAMS - Security Testing Automation and Reporting

Adrien de Beaupré
Intru-Shun.ca Inc.
SANS Internet Storm Center Handler

SecTor 2011, 19 October 2011

©2011 Intru-Shun.ca Inc.
Agenda

- Definitions
- Methodology
- Workflow
- Reporting
- Problems
- Solutions
- Conclusion
Definitions

• Vulnerability - flaw or weakness in a system that can be exploited.

• Security audit - assess the adequacy of controls and evaluate compliance.

• Vulnerability assessment - description and analysis of vulnerabilities in a system.

• Penetration testing - circumvent the security features of a system.
Testing

- Every test consists of a stimulus and response, and monitoring to verify the response, or lack thereof.
- Testing consists of modules.
- Each module has an input and an output.
- You must monitor closely for responses.
- Testing must be appropriate to the target.
- Testing is of limited value if nothing is fixed.
Methodology

• Logistics and Planning
• Open Source Information Gathering
• Reconnaissance
• Identification / Enumeration
• Research
• Vulnerability Identification
• Validation / Exploitation
• Reporting

©2011 Intru-Shun.ca Inc.
Open Source Info

• **Purpose:** gathering information on the target organization, typically from the Internet.

• **Inputs:** organization name, URL, IP addresses or ranges, industry or organization type.

• **Outputs:** URLs, IP addresses or ranges, email addresses, ‘buzz’, technologies used, resumes, names, host names...

• **Data types:** text, graphics, statistics...
Reconnaissance

• Purpose: determine which systems are live and map the network/technology.
• Inputs: URLs, IP addresses or ranges.
• Outputs: Whois, DNS, IP addresses or host names of systems which are likely to be live...
• Tools: Ping, Nmap, Ike-scan, Fierce Doman Scanner, traceroute, ICMP...
• Data types: text files, XML files...

©2011 Intru-Shun.ca Inc.
Identification / Enumeration

• **Purpose:** enumerate the systems that are live, determine open ports, listening services, map applications, operating systems, and versions.
• **Inputs:** systems known to be live/available.
• **Outputs:** ports, services, OS, versions, patches.
• **Tools:** Nmap, Amap, Ike-scan, Nessus…
• **Data types:** text files, XML files…
Research

• Purpose: list all potential vulnerabilities.
• Inputs: technologies in use.
• Outputs: list of potential vulnerabilities.
• Tools: vulnerability databases, search engines...
• Data types: text files, XML files, databases...
Vulnerability Identification

• **Purpose**: identify known or unknown vulnerabilities in the identified technologies.
• **Inputs**: IP addresses, ports, services, applications.
• **Outputs**: listing of potential vulnerabilities.
• **Tools**: scanners such as Nessus, NexPose, Burp, W3AF, ZAP...
• **Data types**: text files, XML files, databases...
Validation / Exploitation

• Purpose: assign a confidence value and validate potential vulnerabilities. Have FUN!!
• Inputs: listing of all potential vulnerabilities.
• Outputs: listing of validated vulnerabilities and confidence rating values.
• Tools: penetration testing (Metasploit, Core Impact, Canvas...), manual validation, fuzzers...
• Outputs: text files, graphics, XML files, database entries, databases...
Reporting

• Purpose: assign risk and priority ratings to confirmed vulnerabilities.
• Inputs: list of validated vulnerabilities.
• Outputs: analysis results.
• Tools: people brain power.
• Outputs: text files, database entries, documents...
• Wordsmithing.
Why Automate?

• Laziness 😊.
• Consistent results over time.
• Allows for scheduling and trending.
• Streamlined and more efficient.
• Engineering a process that can be run and maintained by an operational group.
• Allows the test team to concentrate on the areas that are not automated.
Requirements

- Process – follow consistent repeatable methodology.
- Scriptable – typically Linux CLI tools.
- Tool – result that can be parsed.
- Database – for correlation and reporting.
- Correlated – multiple sources of data.
- Analyzed – intelligent human analysis.
- Mitigation – how to respond, recommendations.
- Metrics – quantitative, measurable, trends.
- Severity – rating system.
Workflow

• Methodology is broken down into modules.
• Output from one is the input to the next.
• Unfortunately most tools do not follow the methodology flow precisely, or may not allow for data extraction between modules.
• Which means that either we must run each tool multiple times with different configurations, or different tools for each module.

©2011 Intru-Shun.ca Inc.
Workflow

• Output from module > database import
• Database queries > inputs to next module
• Reporting module > ticketing
• Tickets > vulnerability management and mitigation
• Close the loop back to the test team process
• Re-test where necessary
Problem

• Individual tools do not always follow a methodology and do not always allow for sufficiently granular control.
• No one tool can perform all modules.
• Methodology requires use of multiple tools.
• Each tool may have a different output format or use a proprietary database.
• Correlation and analysis can be time consuming.
What is Missing

• Security Assessments collect a lot of data, but don’t always correlate the data.
• To properly identify risk and threats, correlation of collected data is necessary.
• Correlation between different tools is essential!
• Marking false positives, adding manual findings, and annotating is also required.
• Current systems – Extremely Expensive.
Solutions

• Single unified and normalized database schema for all security assessment tools.
• Obviously requires that such a schema exist!
• Requires a parser for each tool we use.
• This allows us to create an abstract layer between the tools and the common database, while still allowing us to enforce the methodology regardless of the tools used.
OSSAMS

- Open Source Security Assessment Management System
 www.ossams.com
- A framework for security assessors to correlate and analyze risk to information systems.
- Streamlines the assessment reporting process.
- A modular process that builds on past assessments.

©2011 Intru-Shun.ca Inc.
Database Design

• One of the key aspects of OSSAMS is the database design.
• It is capable of having any number of tool outputs as an input.
• Currently using MySQL on Linux with Python, PowerShell, or Perl scripts to parse outputs.
• A front-end will be designed in addition to CLI.
• It is flexible, extensible, and Open Source.
Parsing Scripts

- Main function
- Read configuration function
- Database access function
- Read a list of files
- Read a directory of files
- Parsing XML, HML, or text file function
- Insert function
- Return
Tooloutput

• For every tool there are outputs. An output file, typically an XML file, will describe what the tool has discovered from the target domain, subnet, system, host, or application.

• Tooloutputnumber - Primary Key, auto-increment. Projectname, Projectid, Toolname, Filename, Filedate, Tooldate, Version, OSSAMSVersion, Scanner, Inputtimestamp.
Configuration

• For every TOOLOUTPUT it may contain configuration information about the tool. Its primary key is configurationnumber, which is an auto-increment.

• Configurationtype, Configurationoptionname, Configurationoptionvalue
Hosts

• A toolout may describe none, one, or more hosts (computers or network devices). Its primary key is hostnumber, which is an auto-increment.

• Hostproperty, Hostvalue, ipv4, ipv6, Hostname, Hostptr, Whois, Recon, Reconreason, Hostcriticality, Macaddress, Macvendor, Hostnotes, Hostos, Osgen, Osfamily.
Ports

• A host may have none, one, or more ports open. This table contains information about ports (open, filtered, or closed). Its primary key is portnumber, which is an auto-increment.

Vulnerabilities

- A host, port, or application may have none, one, or more vulnerabilities associated with it. Its primary key is vulnerabilitynumber, which is an auto-increment.

Refs

• A vulnerability may have none, one, or more references associated with it. A reference can be a link to a web site, a database entry (such as SecurityFocus bid, OSVDB, Secunia, CVE, CCE, CWE, …).

• Referencetype - Type reference (URI, OSVDB, CVE, …)

• Referencevalue – Value of the reference.
Other Objects

• Particularly for internal and/or authenticated scanning.
• Subnets: a host may be part of a subnet.
• Domains: a host may be part of a domain.
• Groups: a host or domain may group objects.
• Users: a host or domain may contain users.
Supported tools

• Completed:
 – acunetix, burp, grendel, nessus, netsparker, nmap, ratproxy, retina community, skipfish, sslscan, w3af, wapiti, watcher, websecunify, zap.

• Roadmap:
 – arachni, core impact, fierce, httprint, iss, languard, metasploit, ncircle, nexpose, n-stalker, ntospider, openvas, proxystrike, retina, saint, sandcat, webcruiser, webinspect, wsfuzzer...
Demo

• A brief demo of the parsing script and database use.
• Also briefly discuss the roadmap for OSSAMS:
 – Finalize the database design and parser scripts.
 – Reporting templates.
 – Query database for module tool input.
 – OSSTMM RAVs.
 – OWASP.
 – Other methodologies/frameworks.
 – Work on tool data interchange format.
 – Get more people involved!!
Conclusions

• The key is not running the scanners, but analysis, methodology, correlation, documentation, and problem solving.
• Organizations can automate security testing and reporting processes, particularly consultants and enterprises.
• The key is analysis and database utilization.
• These can be built using Free / Open Source Software tools and/or commercial offerings.
• Should be done with proper planning, tools, methodology, processes, and expertise.
QUESTIONS?

ADRIEN@INTRU-SHUN.CA

THANK YOU!